Dataset Utilities
These utility functions are meant to help you do complex modifications to your recipe with a single step. We encourage you to see how these are implemented by opening the drop down below each function to see the source code.
For any modification to a recipe's ingredients, you need to get a Pantry of ingredients:
from leip_recipe_designer import Pantry
pantry = Pantry.build("./local_pantry")
Generic Data Generator Functions¶
leip_recipe_designer.helpers.data.new_data_generator_by_format
¶
new_data_generator_by_format(type: LoadableDataType, root_path, pantry, nclasses: Optional[int] = None)
Creates a data_generator ingredient of the provided type, given that the data is structured in the canonical format of the type specified.
Parameters:
-
type
(LoadableDataType
) –One of the supported data types.
-
n_classes
–Number of classes in your dataset, excluding the background class.
-
pantry
–The ingredients storage.
-
root_path
–The absolute path to the root directory of the dataset.
Source code in leip_recipe_designer/helpers/data.py
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 |
|
leip_recipe_designer.helpers.data.get_data_generator_by_name
¶
get_data_generator_by_name(pantry: IngredientCache, regex_ingredient_name: str) -> RecipeNode
Instantiates a single data_generator node based on a regex_ingredient_name.
This method is used to instantiate some data that has already been integrated and offered.
To list available off-the-shelf data run recipe.options("data_generator")
.
The returned value can replace another data_generator in a recipe via
replace_data_generator(recipe, data_generator_node)
Parameters:
-
pantry
(IngredientCache
) –The ingredients storage.
-
regex_ingredient_name
(str
) –A string to regex match to a data_generator name.
Returns:
-
data_generator
(RecipeNode
) –A
data_generator.vision.detection.2d
ingredient node.
Examples:
>>> from leip_recipe_designer.helpers.data import get_data_generator_by_name, replace_data_generator
>>> my_data = get_data_generator_by_name(pantry = mypantry, regex_ingredient_name = "Face Mask")
>>> replace_data_generator(some_existing_recipe, my_data)
Source code in leip_recipe_designer/helpers/data.py
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
|
Data Generator Manipulation¶
leip_recipe_designer.helpers.data.replace_data_generator
¶
replace_data_generator(recipe: RecipeNode, data: RecipeNode, keep_recipe_augmentation: bool = True, keep_recipe_composition: bool = True)
Replace the current dataset with the provided one.
Parameters:
-
recipe
(RecipeNode
) –The recipe to be modified.
-
data
(RecipeNode
) –The
data_generator
ingredient node. -
keep_recipe_augmentation
(bool
, default:True
) –If True, the data augmentations of the current dataset are transferred to the newly added ingredient.
-
keep_recipe_composition
(bool
, default:True
) –If True, the composite transformation or its absence in the recipe will be preserved; otherwise, it'll be borrowed from the provided data.
Examples:
>>> from leip_recipe_designer.helpers.data import new_pascal_data_generator, replace_data_generator
>>> my_data = new_pascal_data_generator(root_path="/some/place")
>>> replace_data_generator(some_existing_recipe, my_data)
Source code in leip_recipe_designer/helpers/data.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
leip_recipe_designer.helpers.data.attach_fiftyone_data_generator
¶
attach_fiftyone_data_generator(pantry: IngredientCache, dataset_name: str, nclasses: int, label_map: Optional[str] = None, view_name_train: Optional[str] = 'train_view', view_name_val: Optional[str] = 'val_view', groundtruth_field_name: Optional[str] = 'ground_truth') -> RecipeNode
Creates a data generator for your FiftyOne Dataset
Parameters:
-
pantry
(IngredientCache
) –The ingredients storage.
-
dataset_name
(str
) –The name used while creating the FiftyOne Dataset.
-
nclasses
(int
) –The number of classes in your dataset.
-
view_name_train
(Optional[str]
, default:'train_view'
) –The name of a view on the FiftyOne Dataset you want to use for training.
-
view_name_val
(Optional[str]
, default:'val_view'
) –The name of a view on the FiftyOne Dataset you want to use for evaluating.
-
groundtruth_field_name
(Optional[str]
, default:'ground_truth'
) –The field name for ground truth in your FiftyOne Dataset (Print out a sample of the dataset for a detailed description).
-
label_map
(Optional[str]
, default:None
) –A dictionary enumerating the class names and the indeces to map them to, as `{"class_0_name": 0, "class_1_name": 1,...}
Returns:
-
data_generator
(RecipeNode
) –A
data_generator.vision.detection.2d
ingredient node.
Source code in leip_recipe_designer/helpers/data.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
Format-Specific Data Generators¶
leip_recipe_designer.helpers.data.new_pascal_data_generator
¶
new_pascal_data_generator(pantry: IngredientCache, root_path: str, nclasses: int, is_split: bool = True, annotations_dir: str = 'Annotations', images_dir: str = 'JPEGImages', trainval_split_ratio: Optional[float] = None, trainval_split_seed: Optional[int] = None, train_set: Optional[str] = 'ImageSets/train.txt', val_set: Optional[str] = 'ImageSets/val.txt', dataset_name: str = 'pascal-like-data', image_extension: Optional[str] = 'jpg', download_url: Optional[str] = None, image_filename_from_xml_contents: bool = True) -> RecipeNode
Creates a new data_generator ingredient to ingest new pascal formatted detection dataset.
Parameters:
-
pantry
(IngredientCache
) –The ingredients storage.
-
root_path
(str
) –The absolute path to the root directory of the dataset.
-
annotations_dir
(str
, default:'Annotations'
) –The path to folder containing xml files, relative to root_path.
-
images_dir
(str
, default:'JPEGImages'
) –The path to folder containing only images, relative to root_path.
-
nclasses
(int
) –The number of classes in your dataset.
-
is_split
(bool
, default:True
) –True or False. If set to True, text files containing the list of samples for training and validation should be specified using train_set and val_set. If set to false, data will be split by the ingestor given the trainval_split_ratio and trainval_split_seed
-
trainval_split_ratio
(Optional[float]
, default:None
) –The ratio to use to split the dataset. Used only if is_split: false
-
trainval_split_seed
(Optional[int]
, default:None
) –The seed to use to pseudo randomly split the dataset. Used only if is_split: false
-
train_set
(Optional[str]
, default:'ImageSets/train.txt'
) –Used only if is_split: true The path to text file containing names (no extensions) to the training samples.
-
val_set
(Optional[str]
, default:'ImageSets/val.txt'
) –Used only if is_split: true The path to text file containing names (no extensions) to the validation samples.
-
dataset_name
(str
, default:'pascal-like-data'
) –This string will be used to name any generated artifacts.
-
image_extension
(Optional[str]
, default:'jpg'
) –File extension of the images.
-
download_url
(Optional[str]
, default:None
) –URL to download the dataset from. If data is not already on root_path, it can download into root path.
-
image_filename_from_xml_contents
(bool
, default:True
) –If True, the image name is retrieved from the XML annotations. Otherwise, the XML filename + the provided image extension is used.
Returns:
-
data_generator
(RecipeNode
) –A
data_generator.vision.detection.2d
ingredient node.
Examples:
The example of the dataset structure could be the following:
my_dataset
├── Annotations
│ ├── image1.xml
│ └── image2.xml
├── JPEGImages
│ ├── image1.jpg
│ └── image2.jpg
└── ImageSets
├── train.txt
└── val.txt
# Annotations/image1.xml
<annotation>
<folder></folder>
<filename>image1.jpg</filename>
<size>
<width>image1_width</width>
<height>image1_height</height>
<depth>image1_num_channels</depth>
</size>
<object>
<name>class_name1</name>
...
<bndbox>
<xmin>bounding_box_1_xmin</xmin>
<ymin>bounding_box_1_ymin</ymin>
<xmax>bounding_box_1_xmax</xmax>
<ymax>bounding_box_1_ymax</ymax>
</bndbox>
...
</object>
</annotation>
# ImageSets is an optional folder and provides a split list of image names for each dataset.
# ImageSets/train.txt
image1
image2
You can create a new data generator for this type of structure by running the following:
from leip_recipe_designer.helpers.data import new_pascal_data_generator, replace_data_generator
new_data = new_pascal_data_generator(
pantry=pantry,
root_path="/my/path/my_dataset",
nclasses=1,
)
replace_data_generator(recipe, new_data)
Source code in leip_recipe_designer/helpers/data.py
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
|
leip_recipe_designer.helpers.data.new_coco_data_generator
¶
new_coco_data_generator(pantry: IngredientCache, root_path: str, nclasses: int, train_annotations_json: str = 'annotations/instances_train.json', val_annotations_json: str = 'annotations/instances_val.json', train_images_dir: str = 'train', val_images_dir: str = 'val', label_indexing: str = '1-indexed-no-background', dataset_name: str = 'coco-like-data', download_url: Optional[str] = None) -> RecipeNode
Creates a new data_generator ingredient to ingest new COCO formatted detection dataset.
Parameters:
-
pantry
(IngredientCache
) –The ingredients storage.
-
root_path
(str
) –The absolute path to the root directory of the dataset.
-
train_annotations_json
(str
, default:'annotations/instances_train.json'
) –Path to .json file of training annotations, relative to
root_path
. -
val_annotations_json
(str
, default:'annotations/instances_val.json'
) –Path to .json file of validation annotations, relative to
root_path
. -
train_images_dir
(str
, default:'train'
) –Path to folder containing only training images, relative to
root_path
. -
val_images_dir
(str
, default:'val'
) –Path to folder containing only validation images, relative to
root_path
. -
nclasses
(int
) –The number of classes in your dataset.
-
label_indexing
(str
, default:'1-indexed-no-background'
) –Parameter that helps the data ingestor recognize if there is a background class. One of 0-indexed-no-background, 1-indexed-no-background, 0-indexed-with-background.
-
dataset_name
(str
, default:'coco-like-data'
) –This string will be used to name any generated artifacts.
-
download_url
(Optional[str]
, default:None
) –URL to download the dataset from. If data is not already on root_path, it can download into root path.
Returns:
-
data_generator
(RecipeNode
) –A
data_generator.vision.detection.2d
ingredient node.
Examples:
The example of the dataset structure could be the following:
my_dataset
├── annotations
│ ├── instances_train.json
│ └── instances_val.json
├── train
│ ├── image1.jpg
│ └── image2.jpg
└── val
├── image3.jpg
└── image4.jpg
# annotations/instances_train.json
{
"images": [
{
"id": 1,
"width": image1_width,
"height": image1_height,
"file_name": image1.jpg
}
...
],
"annotations": [
{
"id": 1,
"image_id": 1,
"category_id": 1,
"bbox": [xmin, ymin, width, height],
"area": bbox_width x bbox_height,
"iscrowd": 0
}
...
],
"categories": [
{
"id": 1,
"name": class_name1
}
...
]
}
You can create a new data generator for this type of structure by running the following:
from leip_recipe_designer.helpers.data import new_coco_data_generator, replace_data_generator
new_data = new_coco_data_generator(
pantry=pantry,
root_path="/my/path/my_dataset",
nclasses=1,
)
replace_data_generator(recipe, new_data)
Source code in leip_recipe_designer/helpers/data.py
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
|
leip_recipe_designer.helpers.data.new_yolo_data_generator
¶
new_yolo_data_generator(pantry: IngredientCache, root_path: str, nclasses: int, annotations_dir: str = 'labels', images_dir: str = 'images', is_split: bool = True, trainval_split_ratio: Optional[float] = None, trainval_split_seed: Optional[int] = None, dataset_name: str = 'yolo-like-data', train_subdir: Optional[str] = 'train', val_subdir: Optional[str] = 'val', download_url: Optional[str] = None) -> RecipeNode
Creates a new data_generator ingredient to ingest new YOLO formatted detection dataset.
Expected folder structure for split data:
|---root_path
|------train_subdir (relative to root_path)
|---------images_dir (relative to train_subdir)
|---------annotations_dir (relative to train_subdir)
|------val_subdir (relative to root_path)
|---------images_dir (relative to val_subdir)
|---------annotations_dir (relative to val_subdir)
Expected folder structure for not split data:
|---root_path
|------images_dir (relative to root_path)
|------annotations_dir (relative to root_path)
Parameters:
-
pantry
(IngredientCache
) –The ingredients storage.
-
root_path
(str
) –The absolute path to the root directory of the dataset.
-
annotations_dir
(str
, default:'labels'
) –Relative path to folder containing txt files, one per sample, samplename.txt. Each txt file will have one row per bounding box, formatted as
label_index, x_center, y_center, box_width, box_height
-
images_dir
(str
, default:'images'
) –Relative path to folder containing only images.
-
nclasses
(int
) –The number of classes in your dataset.
-
is_split
(bool
, default:True
) –True or False. If set to True, subfolders containing training and validation images and annotations need to be specified with
train_subdir
andval_subdir
. If set to false, data will be split by the ingestor using the trainval_split_ratio and trainval_split_seed -
trainval_split_ratio
(Optional[float]
, default:None
) –The ratio to use to split the dataset. Used only if is_split: false
-
trainval_split_seed
(Optional[int]
, default:None
) –The seed to use to pseudo randomly split the dataset. Used only if is_split: false
-
train_subdir
(Optional[str]
, default:'train'
) –Used only if is_split: true The path to text file containing names (no extensions) to the training samples.
-
val_subdir
(Optional[str]
, default:'val'
) –Used only if is_split: true The path to text file containing names (no extensions) to the validation samples.
-
dataset_name
(str
, default:'yolo-like-data'
) –This string will be used to name any generated artifacts.
-
download_url
(Optional[str]
, default:None
) –URL to download the dataset from. If data is not already on root_path, it can download into root path.
Returns:
-
data_generator
(RecipeNode
) –A
data_generator.vision.detection.2d
ingredient node.
Examples:
The example of the dataset structure could be the following:
my_dataset
├── train
│ ├── images
| │ ├── image1.jpg
| │ └── image2.jpg
│ └── labels
| ├── image1.txt
| └── image2.txt
└── val
├── images
│ ├── image3.jpg
│ └── image4.jpg
└── labels
├── image3.txt
└── image4.txt
# train/labels/image1.txt
class_name1 bbox1_x_center bbox1_y_center bbox1_width bbox1_height
class_name1 bbox2_x_center bbox2_y_center bbox2_width bbox2_height
You can create a new data generator for this type of structure by running the following:
from leip_recipe_designer.helpers.data import new_yolo_data_generator, replace_data_generator
new_data = new_yolo_data_generator(
pantry=pantry,
root_path="/my/path/my_dataset",
nclasses=1,
dataset_name="my-custom-name",
)
replace_data_generator(recipe, new_data)
Source code in leip_recipe_designer/helpers/data.py
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
|
leip_recipe_designer.helpers.data.new_kitti_data_generator
¶
new_kitti_data_generator(pantry: IngredientCache, root_path: str, nclasses: int, labels_dir: str = 'labels', images_dir: str = 'images', is_split: bool = True, sub_dir: Optional[str] = None, trainval_split_ratio: Optional[float] = None, trainval_split_seed: Optional[int] = 42, train_subdir: Optional[str] = 'train', val_subdir: Optional[str] = 'val', dataset_name: str = 'kitti-like-data', download_url: Optional[str] = None) -> RecipeNode
Creates a new data_generator ingredient to ingest new pascal formatted detection dataset.
Parameters:
-
pantry
(IngredientCache
) –The ingredients storage.
-
root_path
(str
) –The absolute path to the root directory of the dataset.
-
sub_dir
(Optional[str]
, default:None
) –The path to subdirectory, relative to root_path.
-
labels_dir
(str
, default:'labels'
) –The path to folder containing only labels, relative to root_path.
-
images_dir
(str
, default:'images'
) –The path to folder containing only images, relative to root_path.
-
nclasses
(int
) –The number of classes in your dataset.
-
is_split
(bool
, default:True
) –True or False. If set to True, text files containing the list of samples for training and validation should be specified using train_set and val_set. If set to false, data will be split by the ingestor given the trainval_split_ratio and trainval_split_seed
-
trainval_split_ratio
(Optional[float]
, default:None
) –The ratio to use to split the dataset. Used only if is_split: false
-
trainval_split_seed
(Optional[int]
, default:42
) –The seed to use to pseudo randomly split the dataset. Used only if is_split: false
-
train_subdir
(Optional[str]
, default:'train'
) –Used only if is_split: true The path to the training samples.
-
val_subdir
(Optional[str]
, default:'val'
) –Used only if is_split: true The path to the validation samples.
-
dataset_name
(str
, default:'kitti-like-data'
) –This string will be used to name any generated artifacts.
-
download_url
(Optional[str]
, default:None
) –URL to download the dataset from. If data is not already on root_path, it can download into root path.
Returns:
-
data_generator
(RecipeNode
) –A
data_generator.vision.detection.2d
ingredient node.
Examples:
This is the expected structure of a split KITTI dataset:
my_dataset
├── train
│ ├── images
| │ ├── image1.jpg
| │ └── image2.jpg
│ └── labels
| ├── image1.txt
| └── image2.txt
└── val
├── images
│ ├── image3.jpg
│ └── image4.jpg
└── labels
├── image3.txt
└── image4.txt
from leip_recipe_designer.helpers.data import new_yolo_data_generator, replace_data_generator
new_data = new_kitti_data_generator(
pantry=pantry,
root_path="/my/path/my_dataset",
nclasses=1,
dataset_name="my-custom-name",
)
replace_data_generator(recipe, new_data)
Source code in leip_recipe_designer/helpers/data.py
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
|
Data modification helpers¶
leip_recipe_designer.helpers.data.mosaicify
¶
mosaicify(recipe: RecipeNode)
In-place function that applies mosaic training augmentation to the recipe's dataset. Mosaic is a data augmentation technique that combines 4 images into a single image. Mosaic does this by resizing each of the four images, stitching them together, and then taking a random cutout of the stitched images to get the final Mosaic image.
Parameters:
-
recipe
(RecipeNode
) –The recipe to be modified.
Examples:
>>> from leip_recipe_designer.helpers.data import new_pascal_data_generator, replace_data_generator, mosaicify
>>> my_data = new_pascal_data_generator(root_path="/some/place")
>>> replace_data_generator(some_existing_recipe, my_data)
>>> mosaicify(some_existing_recipe)
Source code in leip_recipe_designer/helpers/data.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
|
leip_recipe_designer.helpers.data.change_label_map
¶
change_label_map(recipe: RecipeNode, label_mapping_dict: Dict)
Select what classes to use in your dataset, combine multiple classes into one, or leave some classes out of training.
Parameters:
-
recipe
(RecipeNode
) –The recipe to be modified.
-
label_mapping_dict
(Dict
) –Keys are the string name of the class, value is the integer label to map it to. If there are multiple string labels mapped to the same integer value, the classes will be merged.
Examples:
Let's assume my_recipe
has the COCO dataset as its data_generator.
Example 1: Train on only the vehicles in COCO data, and skip all the samples that dont have any vehicle on it. This will now be a 5 class dataset:
>>> from leip_recipe_designer.helpers.data import change_label_map
>>> label_mapping_dict = {"car": 1,
>>> "bus": 2,
>>> "truck": 3,
>>> "motorcycle": 4,
>>> "bicycle": 5,
>>> }
>>> change_label_map(my_recipe, label_mapping_dict)
Example 2: Combine all vehicles into one class, these will now be a single class dataset:
>>> label_mapping_dict = {"car": 1,
>>> "bus": 1,
>>> "truck": 1,
>>> "motorcycle": 1,
>>> "bicycle": 1,
>>> }
>>> change_label_map(my_recipe, label_mapping_dict)
Source code in leip_recipe_designer/helpers/data.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
leip_recipe_designer.helpers.data.replace_augmentations
¶
replace_augmentations(recipe: RecipeNode, regex_ingredient_name: str, phase: str = 'train')
Replace current augmentations with the provided one.
Parameters:
-
recipe
(RecipeNode
) –The recipe to be modified.
-
ingredient_name
–The name or regex of the augmentations ingredient to be assigned.
-
phase
(str
, default:'train'
) –One of "train" or "val".
Examples:
>>> from leip_recipe_designer.helpers.data import replace_augmentations
>>> replace_augmentations(some_existing_recipe, regex_ingredient_name="Yolo", phase="train")
Source code in leip_recipe_designer/helpers/data.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|