Detector Recipes BYOD: Pascal VOC Format Example
Bring Your Own Pascal VOC Formatted Data
Training with a Pascal VOC formatted dataset is very similar to the using COCO formatted data. Perform the following to train your model with Pascal VOC formatted data:
Find the Pascal-like dataset template file in the Docker container located at
/latentai/custom-configs/data_old/pascal-reader-template.yaml
It will look like this:
defaults:
- /data/transforms@module.dataset_generator.train_transforms: resize.yaml
- /data/transforms@module.dataset_generator.valid_transforms: resize.yaml
- _self_
nclasses: 0
module:
_target_: af.core.data.modules.adaptermodule.AdaptorDataModule
batch_sizes: ${task.batch_sizes}
num_workers: ${task.num_workers}
adaptors: ${model.adaptors}
dataset_generator:
_target_: af.core.data.generic.pascal_reader.PascalReader
root_path: null
images_dir: JPEGImages
annotations_dir: Annotations
type: detection
is_split: false
trainval_split_ratio: 0.75
trainval_split_seed: 42
train_set: ImageSets/Main/train.txt
val_set: ImageSets/Main/val.txt
labelmap_file: pascal_label_map.json
label_indexing: 1-indexed-no-background # one of: "0-indexed-no-background", "1-indexed-no-background", "0-indexed-with-background". if dataset contains a background class, it must be at index 0.
dataset_name: my-custom-pascal-like-data
The fields you will need to change are for the number of classes in your dataset, and the Reader settings shown here from line 14 on. Changing those fields with your dataset’s information is enough to load and use your PascalVOC-formatted dataset.
nclasses
: The number of classes in your dataset.root_path
: The absolute path to the root directory of the dataset.images_dir
: The path to folder containing only images, relative to root_path.annotations_dir
: The path to folder containing xml files, relative to root_path.type
:detection
orsegmentation
. We can leave the value asdetection
for this detection recipe.is_split
:true
orfalse
.If set to
true
, text files containing the list of samples for training and validation should be specified usingtrain_set
andval_set
If set to
false
, data will be split by the ingestor given thetrainval_split_ratio
andtrainval_split_seed
trainval_split_ratio
: The ratio to use to split the dataset. Used only ifis_split: false
trainval_split_seed
: The seed to use to pseudo randomly split the dataset. Used only ifis_split: false
train_set
: The path to text file containing names (no extensions) to the training samples. Used only ifis_split: true
val_set
: The path to text file containing names (no extensions) to the validation samples. Used only ifis_split: true
labelmap_file
: (Optional) The path to a json file containing a map from class index (int) to class name (string), relative to root_path. If you don't have this file, it will be created automatically on the first run, and stored to streamline future runs.dataset_name
: This string will be used to name any generated artifacts.
It is necessary to remove the label_indexing
parameter completely. Please delete line 24 from your yaml file.
It is necessary to remove the label_indexing
parameter completely. Please delete line 24 from your YAML file.
A Concrete BYOD Pascal VOC Format Example
Smoke Detection Dataset Overview
Download and extract the dataset.
mkdir -p /latentai/workspace/datasets
cd /latentai/workspace/datasets
wget https://s3.us-west-1.amazonaws.com/leip-showcase.latentai.io/recipes/smoke_dataset.zip
unzip smoke_dataset.zip
# Verify data location matches the directories in this example:
ls /latentai/workspace/datasets/smoke_dataset
Annotations ImageSets JPEGImages
# Get back to /latentai
cd /latentai
Using the Template to Ingest the Smoke Detection Data
Now we need to create a YAML configuration file for this dataset. Create a new file custom-configs/data/smoke_config.yaml
by copying our template:
cp /latentai/custom-configs/data_old/pascal-reader-template.yaml \
/latentai/custom-configs/data/smoke_config.yaml
We will now edit the template with the correct values for the dataset_generator
section and the correct number of classes. After filling out your configuration, custom-configs/data/smoke_config.yaml
should look like this:
defaults:
- /data/transforms@module.dataset_generator.train_transforms: resize.yaml
- /data/transforms@module.dataset_generator.valid_transforms: resize.yaml
- _self_
nclasses: 1
module:
_target_: af.core.data.modules.adaptermodule.AdaptorDataModule
batch_sizes: ${task.batch_sizes}
num_workers: ${task.num_workers}
adaptors: ${model.adaptors}
dataset_generator:
_target_: af.core.data.generic.pascal_reader.PascalReader
root_path: /latentai/workspace/datasets/smoke_dataset
images_dir: JPEGImages
annotations_dir: Annotations
type: detection
is_split: true
trainval_split_ratio: null
trainval_split_seed: null
train_set: ImageSets/Main/train.txt
val_set: ImageSets/Main/val.txt
labelmap_file: pascal_label_map.json
dataset_name: smoke-pascal-like
Use command=vizdata
to see what a few samples of the data will look like:
af data=smoke_config command=vizdata
The vizdata
command will read the annotations and draw bounding boxes over some of the samples. The sample images will be stored in /latentai/artifacts/vizdata/smoke/*
.
Train
You can train a model by selecting any of our detector recipes and using command=train
:
af --config-name=<recipe_name> model.architecture=<architecture_name> data=smoke_config \
command=train task.moniker="BYOD_recipe"
Note where the checkpoint is stored at the end of the training run. The checkpoint will be stored in a path of the form:/latentai/artifacts/train/{date}_{time}_BYOD_recipe/{epoch}.ckpt
Find that file and store it for ease of use in the next steps:
export SMOKE_CHECK=<path to .ckpt file>
# Example:
# export SMOKE_CHECK=/latentai/artifacts/train/2022-08-23_17-25-29_task_BYOD_recipe/epoch-19_step-1840.ckpt
Evaluate on the Host Before Exporting
You can now use your newly trained model by passing the checkpoint to the commands you used previously with the pre-trained model. Perform the following to evaluate.
af --config-name=<recipe_name> model.architecture=<architecture_name> data=smoke_config \
command=evaluate task.moniker="BYOD_recipe" \
+checkpoint=$SMOKE_CHECK
Export the Model
af --config-name=<recipe_name> model.architecture=<architecture_name> data=smoke_config \
command=export task.moniker="BYOD_recipe" \
+export.include_preprocessor=True \
+checkpoint=$SMOKE_CHECK
Your exported model will be saved in:/latentai/artifacts/export/<model_directory_name>/traced_model.pt
+export.include_preprocessor=True
includes in the exported package a serialized version of the preprocessor used to train this model. You will need this preprocessor when evaluating the model outside of the AF.
In a later version of the LEIP SDK, this will be the default behavior and therefore you wont need to pass the flag.
Refer to Export Options for additional export command options such as tracing batch size.
Save the traced_model.pt
path as a variable:
export MODEL_PATH=/latentai/artifacts/export/<model_directory_name>/traced_model.pt
Optimize the Model
You will need to identify a calibration dataset from your BYOD data before you can optimize your trained model. Identifying an ideal calibration dataset is beyond the scope of this tutorial, but it usually entails selecting a few representative images for the quantizer. If you are targeting a CUDA device, you will need to provide 2N images, where N is your batch size. You will need to provide a path to these images in the file rep_dataset.txt
that is in the model recipe directory. We will use the last two images in the validation dataset for the Smoke dataset.
Override the file in /latentai/recipes/<recipe_name>/rep_dataset.txt
with paths to samples in the Smoke dataset:
/latentai/workspace/datasets/smoke_dataset/JPEGImages/ck0ukkz8tytsn0721y70sud46_jpeg.rf.18cbd5352f166266b09e38e04afa7394.jpg
/latentai/workspace/datasets/smoke_dataset/JPEGImages/ck0uklx72wly70701px5wl6fw_jpeg.rf.cb1683418c777e1d072763d02d84465b.jpg
Try using different calibration images if you find that your optimized (INT8) model has substantial accuracy loss from the compiled (Float32) model. Some image sets will produce outlier results that may adversely affect accuracy.
Please bear in mind that the optimal training dataset may change each time you retrain the model. The above is an example dataset, but you may need to test out different datasets to yield the best results after you have trained your model.
Next, all of the following processing files must be copied into exported_model/processors
. This will allow Host Evaluate, Package, and Target Evaluate to operate.
#Copy the processing files into:
cp /latentai/recipes/<recipe_name>/processors/*.py $MODEL_PATH/processors
Make sure your pipeline.yaml file properly references the processors. You can use any of the following options:
preprocessor=file.py::function
preprocessor=file.function
preprocessor=file.json # if exported from AF, this will already be in the model_schema.json
postprocessor=file.py::function
postprocessor=file.function
Once you have exported your trained model and determined a calibration dataset, simply compile and optimize it as before, providing the traced model as the input path:
leip pipeline \
--input_path $EXPORTED_MODEL \
--output_path /latentai/workspace/output/byod_smoke \
--config_path /latentai/recipes/<recipe_name>/pipeline_x86_64_cuda.yaml
Evaluate the Smoke Detection Example on Host
You will need to convert the Pascal VOC formatted data to COCO format if you would like to use leip evaluate
to evaluate your model. You can do this via the af command=export_data
function:
# Export the Pascal data into COCO format:
af data=smoke_config command=export_data
# Some processes will look for the instances file in the data directory:
cp /latentai/artifacts/export_data/COCO/smoke/instances_val2017.json \
/latentai/artifacts/export_data/COCO/smoke/val2017/
# Data will be available here in COCO format:
# /latentai/artifacts/export_data/COCO/smoke
Next, you will need to ensure that there is a model schema file. For this example, create a file called /latentai/recipes/smoke_dataset_schema.json
with the following contents:
{
"coco": {
"data_dir": "/latentai/artifacts/export_data/COCO/smoke/val2017/",
"annotations": "/latentai/artifacts/export_data/COCO/smoke/instances_val2017.json"
}
}
You can now evaluate your compiled, optimized model against the Smoke dataset:
# Evaluate Float32:
leip evaluate \
--input_path /latentai/workspace/output/byod_smoke/Float32-compile/ \
--test_path /latentai/recipes/smoke_dataset_schema.json \
--task_family detection
# Evaluate Int8:
leip evaluate \
--input_path /latentai/workspace/output/byod_smoke/Int8-optimize/ \
--test_path /latentai/recipes/smoke_dataset_schema.json \
--task_family detection
Evaluate the Smoke Detection Example on Target
You will run leip evaluate
in the SDK Docker container with inference performed on the device under test in order to evaluate on a remote target device. You will first need to setup your target by installing Latent AI Object Runner (LOR). You will then evaluate using the LRE objects created by leip pipeline
.
# Substitute the IP address of your target device for <IP_ADDR>
# The default port for LOR is 50051
# Evaluating Float32:
leip evaluate \
--input_path /latentai/workspace/output/byod_smoke/Float32-package \
--host <IP_ADDR> --port 50051 \
--test_path /latentai/recipes/smoke_dataset_schema.json \
--task_family detection
# Evaluating Int8:
leip evaluate \
--input_path /latentai/workspace/output/byod_smoke/Int8-package \
--host <IP_ADDR> --port 50051 \
--test_path /latentai/recipes/smoke_dataset_schema.json \
--task_family detection