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Overview 

Summary 

We provide an example tutorial using Quantization Guided Training (QGT) to fine-tune 

and quantize a pretrained ResNet50 model ( ImageNet 1000 classes). The purpose is to 

show how to use the QGT API using hyperparameters to achieve the best accuracy 

while reducing bit-precision to reduce model size.  

In this tutorial, you will 

1. Train a ResNet50 model from a pre initialized model 

2. Fine tune the training by applying the QGT API 



3. Use QGT hyperparameters to further guide the training. The training is of “local” 

nature, i.e. we are using small learning rates to modify the weights locally, 

avoiding expensive training from scratch 

4. Evaluate results and iterate to continue the fine-tuning process 

 

Introduction  

QGT helps modify existing networks with quantization in mind. As part of the training procedure 

we use a few hyper-parameters: standard ones and QGT related. For example, we use 

batch-size equal to 16 to increase the number of updates per epoch. We are scheduling a 

learning rate decrease ten-folds from epoch to epoch to speed up the training process. Along 

with it, we increase λ_2 parameter tenfold to increase quantization-like characteristics of the 

weights (imposed through a regularizer). 

A successful training is summarized next in two tables for two experiments. The tables contain 

learning rates and quantization error coefficient, λ_2, along with the number of epochs required 

to successfully accomplish the training task. The initial model for all the trainings is 

tf.keras.applications.resnet50. 

4 bits per channel QGT training 

(here val stands for “validation”, deq for “dequant”, and cr. en. for “cross entropy”) 

learn. rate λ_2 epochs val loss val cr.en.  val. acc  deq loss  deq acc  

baseline     74.45   

1e-3 0.1 1 1.2355 1.1161 73.16 1.3998 67.1 

1e-4 1 1 1.1551 1.1208 72.86 1.28 69.28 

1e-6 10 1 1.2279 1.1319 72.60 1.1966 71.02 

1e-7 100 1 2.8315 1.1003 72.99 1.1296 72.18 



2 bits per channel QGT training (First/last layers at FP32) 
 

 
We can see that QGT training achieves 72.18% and 62.68% accuracies for models with 
quantized weights. How this is achieved using the LatentAI SDK is detailed in the following 
sections. 

Setup 
To set up a training procedure we build the dataset pipeline and prepare the QGT Docker 

container with the LatentAI SDK: 

● A construction of tensorflow dataset from ImageNet is a standard process using 

examples from TensorFlow’s official site. One can use 

https://www.tensorflow.org/datasets/api_docs/python/tfds/core/DatasetBuilder​, for 

example. Remember to insert data augmentation into the pipeline, otherwise high 

validation accuracy (>74%) may not be achieved. 

● Run LEIP-SDK docker as per the instructions provided in the LEIP SDK. Additionally, 

mount the ImageNet tensorflow dataset folder in the container with the -v option. The 

final Docker image command would look as follows: 

$ docker start -v <location-of-source-code>:/home -v \ 

                                           ​<location-of-ImageNet-folder>:/data latentaiorg/leip-sdk 

learn. rate λ_2 epochs val loss val cr.en.  val. acc  deq loss  deq acc  

baseline     74.45   

1e-3 1 3 1.9301 1.5039 64.63 1.9016 58.14 

1e-4 10 3 1.6127 1.541 63.98 1.6166 62.68 

https://www.tensorflow.org/datasets/api_docs/python/tfds/core/DatasetBuilder


Training procedures 

Once a Docker container with LEIP SDK is installed we can start training. In order to get 

a high performing 4 bit QGT (per tensor) trained model a scheduling of parameters is 

required. The parameters are changed according to two directives: 

1. Choose a λ_2 value such that the initial quantization-error loss is about 10 times 

the cross-entropy loss. 

2. Choose parameters keeping the initial accuracy value, i.e. at the beginning of 

each cycle the accuracy is equal to the last step value. The accuracy might 

decrease during the training to accommodate quantization restrictions. 

The initial model might not be trained to the best accuracy. As a result, the first choice 

of parameters can increase accuracy during the first training cycle. The results are 

presented in the next table in which each line is obtained using the following command: 

 
$ python3 qgt_train.py --epochs 1 --bits 4 --quantize_per_channel --take_batches 500 
--dataset_path /data --learning rate ​l. rate​ --lambda2 ​λ_2 
 
 
 
 
 
First, we establish the maximal learning rate so that the training accuracy is preserved. 
 

l. rate λ_2 #batches tr loss tr cr.en.  tr. acc  Remarks 

Choosing learning rate 

0 0 500 0.9107 0.7632 79.8 Initial 
model 



 
At the second step, for the learning rate equal to 0.001, the highest value of λ_2 is searched, 
which keeps the initial error approximately 10 times the cross-entropy to preserve the accuracy. 
 
Once the parameters learning rate=​1e-3​ and λ_2=​1e-1​ are established we use the following 
command: 
 
$ python3 qgt_train.py --epochs 2 --bits 4 --quantize_per_channel --dataset_path /data 
--learning_rate​ ​1e-3​ ​--lambda2 ​1e-1 
 
The outcome of this training is summarized in the following table for convenience. 
 

 
Notice that the training loss decreases significantly from 22 to 1.96 (and further decreases to 
0.86 after the second epoch). Also, at the second epoch the difference between the loss and the 
cross entropy is very small, suggesting that the quantization loss is already very small for this 

1e-1 0 500 4.5933 4.5933 14.25 Too ​low 
tr acc 

1e-2 0 500 1.0659 1.0659 72.54 Too ​low 
tr acc 

1e-3 0 500 0.8578 0.8578 78.47 Chosen 

1e-4 0 500 0.9219 0.9219 77.42 1e-3 
faster 

Establishing initial quantization error coefficient λ_2 

1e-3 1 500 154.06
3 

0.9317 76.02 Too 
high 
loss 

1e-3 1e-1 500 22.998
9 

0.8746 77.49 Chosen 

1e-3 1e-2 500 3.7857 0.8814 77.65 Too ​low 
loss 

train loss train 
cross-ent
ropy 

train 
accuracy 

val loss val 
cross-ent
ropy 

val 
accuracy 

dequant 
loss 

dequant 
accuracy 

1.9652 0.7526 80.58 1.2355 1.1161 73.16 1.3998 67.1 

0.8586 0.7405 80.83 1.2430 1.1273 73.04 1.4955 65.54 



choice of parameters. Consequently, we can switch to the next step and increase the value of 
λ_2. 
 
This process is continued until validation and dequant accuracies are similar. The results are 
summarized in the following table (presented in Overview). 
 

 
The corresponding commands are: 
$ python3 qgt_train.py --epochs 1 --bits 4 --quantize_per_channel --dataset_path /data 
--learning_rate​ ​1e-3​ ​--lambda2 ​1e-1 
$ python3 qgt_train.py --epochs 1 --bits 4 --quantize_per_channel --dataset_path /data 
--learning_rate​ ​1e-4​ ​--lambda2 ​1 
$ python3 qgt_train.py --epochs 1 --bits 4 --quantize_per_channel --dataset_path /data 
--learning_rate​ ​1e-6​ ​--lambda2 ​10 
$ python3 qgt_train.py --epochs 1 --bits 4 --quantize_per_channel --dataset_path /data 
--learning_rate​ ​1e-7​ ​--lambda2 ​100 

Condition for Termination of the Training 
The training is stopped once we achieve accuracies of the dequant and the floating point 
models almost equal on the validation set. In the preceding example those values are 71.18 and 
72.99 respectively, and is displayed at the last row of the table. 

Training Directives 
While training it is important to identify when something is not working properly. Let us 
summarize a few correct training behaviours, so that if one of them fails during the training, one 
can modify the hyper parameters. 

1. Total loss decreases​ starting from a high value and not increases. If the parameters 
are chosen correctly (learning rate, λ_2 and especially batch size) the loss will 
significantly decrease at the first epoch. For example, Resnet 4 bits pc on ImageNet 

learn. rate λ_2 epochs val loss val cr.en.  val. acc  deq loss  deq acc  

baseline     74.45   

1e-3 0.1 1 1.2355 1.1161 73.16 1.3998 67.1 

1e-4 1 1 1.1551 1.1208 72.86 1.28 69.28 

1e-6 10 1 1.2279 1.1319 72.60 1.1966 71.02 

1e-7 100 1 2.8315 1.1003 72.99 1.1296 72.18 



converges from 22 to 1.96 on the first epoch with batch-size=16, learning rate=0.001 
and λ_2=0.01. 

2. Training accuracy is preserved​. For large models, especially while training for a high 
number of bits (4,8), the training accuracy usually does not decrease more than 1 
percent from epoch to epoch. For 2 bits training, the situation is more flexible and a few 
percentage drop could be expected. 

3. Switch to a higher value of λ_2. ​When the training loss is stabilized or when the loss is 
twice bigger than the cross-entropy one should increase the value of λ_2 and find the 
highest learning rate (as explained in training procedures). 

4. Decrease learning rate​. If a sharp drop in training accuracy is observed, decrease the 
learning rate. 

 
 
 


